Acta Cryst. (1996). C52, 92-94

Tricoccin R2

K. Sekar, ${ }^{a} * \dagger$ S. Parthasarathy, ${ }^{a}$ H. Schenk, ${ }^{b}$ B. Epe ${ }^{c}$ and A. Mondon ${ }^{\text {c }}$
${ }^{a}$ Department of Crystallography \& Biophysics, \ddagger University of Madras, Guindy Campus, Madras 600 025, India, ${ }^{\text {b }}$ Lab Voor Kristallografie, Nieuwe Achtergracht 166, 1018 WU, Amsterdam, The Netherlands, and ${ }^{\text {' Institute of Organic }}$ Chemistry, University of Kiel, D-2300 Keil, Olshausenstrasse 40-60, Germany

(Received 27 September 1994; accepted 24 May 1995)

Abstract

In the title compound, $\left(3^{\prime} S-\left\{3^{\prime} \alpha, 3^{\prime} \alpha \beta, 5^{\prime} \alpha \alpha, 7^{\prime} \alpha\left[R^{*}\right.\right.\right.$ $\left.\left.\left(R^{*}\right)\right], 8^{\prime} \mathrm{b} \beta\right\}-4$-(2,5-dihydro-2-methyl-5-oxo-2-furanyl)-3^{\prime}-(3-furanyl)-4,5,5',5' α-tetrahydro-5,5-dimethylspiro-[furan-2 $3 H), 7^{\prime}\left(4^{\prime} H\right)-1 H, 3 H-3 \alpha, 8 b$]methanobenzo[1,2-b:3,4-c']difuran)-1'-one, $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{7}$, some $\mathrm{C}-\mathrm{C}$ bonds and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles deviate significantly from their expected values. Both the terminal five-membered rings are nearly planar. The fused five-membered rings, B, C and E, have half-chair, distorted envelope and half-chair conformations, respectively. The six-membered ring is in a slightly distorted sofa conformation. The structure is stabilized by van der Waals interactions.

Comment

Tricoccin R2, (I) was isolated by Epe \& Mondon (Herz, Grisebach, Kirby, 1983) from Cneorum tricoccin L., a shrub native to coastal areas of the western Mediterranean with hairless leaves, yellow blossoms and red fruits.

(I)

Some $\mathrm{C}-\mathrm{C}$ bonds and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles involved in the fused ring systems with axial substitutions of heavy bulky groups deviate by more than the 3σ level from their expected values (Engh \& Huber, 1991). Two factors seem to be responsible for these deviations: (1)

[^0]the degree of substitution at the C atom and (2) the presence of steric strain in the structure (Hall \& Maslen, 1965; Gzella, Zaprutko, Wrezciono \& Jaskólski, 1987; Sekar, Parthasarathy, Kundu \& Barik, 1992, 1993). Rings A and F are planar within 2σ. Rings B, C and E are in half-chair, distorted envelope and half-chair conformations, respectively. Ring D is in a slightly distorted sofa conformation with a mean torsion angle of $33.5(7)^{\circ}$. Puckering is pronounced near C 11 and less so near C14. Packing of the molecules in the unit cell is stabilized by van der Waals interactions.

Fig. 1. Molecular structure with ellipsoids at the 50% probability level.

Experimental

Crystals were grown at room temperature from an ethanol/acetone mixture.

Crystal data
$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{7}$
$M_{r}=438.48$
Monoclinic
C2
$a=22.939$ (1) \AA
$b=6.574(2) \AA$
$c=16.481(2) \AA$
$\beta=114.67(1)^{\circ}$
$V=2259(2) \AA^{3}$
$Z=4$
$D_{x}=1.29 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.5418 \AA$
Cell parameters from 25 reflections
$\theta=20-30^{\circ}$
$\mu=0.739 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$
Colourless

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta-2 \theta$ scans
Absorption correction: empirical, ψ scan $T_{\text {min }}=0.961, T_{\text {max }}=$ 0.991

2312 measured reflections 2230 independent reflections

1996 observed reflections

$$
[I \geq 3.0 \sigma(I)]
$$

$R_{\text {int }}=0.027$
$\theta_{\text {max }}=70^{\circ}$
$h=-26 \rightarrow 26$
$k=0 \rightarrow 8$
$l=0 \rightarrow 27$
2 standard reflections frequency: 120 min intensity decay: none

Refinement

Refinement on F
$R=0.049$
$w R=0.058$
$S=1.08$
1996 reflections
392 parameters

$$
w=1 /\left[\sigma^{2}(F)+0.004351 F^{2}\right]
$$

$(\Delta / \sigma)_{\max }=0.06$.
$\Delta \rho_{\text {max }}=0.298 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.424 \mathrm{e}^{-3}$
Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974), Vol. IV, Table 2.2B)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cl	0.4996 (3)	0.3367 (13)	0.1535 (3)	0.086 (2)
C2	0.5369 (4)	0.3187 (24)	0.1109 (4)	0.132 (5)
C3	0.5549 (3)	0.1046 (29)	0.1167 (3)	0.152 (7)
C4	0.5110 (2)	-0.0331 (9)	0.3509 (2)	0.049 (1)
C5	0.5155 (2)	0.1504 (8)	0.2947 (2)	0.045 (1)
C6	0.5859 (2)	0.2098 (9)	0.3415 (2)	0.054 (2)
C7	0.6052 (2)	0.1500 (8)	0.4406 (2)	0.049 (1)
C8	0.6672 (2)	0.2698 (8)	0.5839 (2)	0.043 (1)
C9	0.6970 (2)	0.0756 (8)	0.5694 (2)	0.044 (1)
C10	0.4897 (2)	0.1402 (9)	0.1906 (2)	0.053 (2)
C11	0.7689 (2)	0.0942 (9)	0.6017 (2)	0.051 (1)
C12	0.7992 (2)	0.1337 (9)	0.7048 (2)	0.050 (1)
C13	0.7687 (2)	0.3112 (8)	0.7325 (2)	0.046 (1)
C14	0.7005 (2)	0.3743 (8)	0.6719 (2)	0.042 (1)
C15	0.6691 (2)	0.4274 (8)	0.7337 (2)	0.049 (2)
016	0.7131 (1)	0.4224 (7)	0.8206 (2)	0.059 (1)
C17	0.7742 (2)	0.3347 (8)	0.8297 (2)	0.049 (1)
C18	0.7574 (2)	0.5110 (9)	0.6846 (3)	0.060 (1)
C19	0.4207 (2)	0.0713 (11)	0.1437 (3)	0.067 (2)
C20	0.7852 (2)	0.1452 (9)	0.8843 (2)	0.053 (2)
C21	0.7453 (2)	-0.0300 (10)	0.8696 (3)	0.068 (2)
C22	0.8365 (3)	0.1102 (11)	0.9621 (3)	0.076 (2)
C23	0.8346 (3)	-0.0704 (11)	0.9983 (3)	0.072 (2)
O24	0.7819 (5)	-0.1497 (13)	0.9468 (6)	0.133 (6)
O25	0.6141 (1)	0.4674 (8)	0.7145 (2)	0.066 (1)
O26	0.6653 (1)	0.0426 (7)	0.4734 (2)	0.055 (1)
O27	0.5551 (1)	0.0250	0.4412 (2)	0.060 (1)
C28	0.4469 (2)	-0.0559 (11)	0.3558 (3)	0.066 (2)
C29	0.5331 (4)	-0.2345 (11)	0.3272 (4)	0.084 (2)
C30	0.6163 (2)	0.3144 (9)	0.5104 (2)	0.051 (1)
O31	0.5280 (2)	-0.0026 (10)	0.1646 (2)	0.087 (2)
032	0.5862 (2)	0.0030 (23)	0.0846 (3)	0.0226 (7)

Table 2. Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$

$\mathrm{C} 4-\mathrm{C} 5$	$1.550(7)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.566(5)$
$\mathrm{C} 5-\mathrm{C} 10$	$1.566(5)$	$\mathrm{C} 13-\mathrm{C} 17$	$1.561(5)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.554(5)$		
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 32$	$133.3(9)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{O} 25$	$128.3(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$122.2(4)$	$\mathrm{O} 16-\mathrm{C} 15-\mathrm{O} 25$	$121.3(5)$
$\mathrm{C} 14-\mathrm{C} 8-\mathrm{C} 30$	$133.5(5)$	$\mathrm{C} 17-\mathrm{C} 20-\mathrm{C} 22$	$125.1(6)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 17$	$122.2(4)$	$\mathrm{C} 17-\mathrm{C} 20-\mathrm{C} 21$	$129.4(5)$
$\mathrm{C} 8-\mathrm{C} 14-\mathrm{C} 15$	$124.4(5)$		

Ring B	
C4-C5-C6-C7	-30.3 (6)
C5-C6-C7-027	13.4 (6)
C6-C7-027-C4	10.6 (6)
C7-027-C4-C5	-29.6 (6)
O27-C4-C5-C6	36.3 (6)
Ring C	
C7-C30-C8-C9	2.4 (7)
C30-C8-C9-026	12.3 (7)
C8--C9-026-C7	-22.7 (6)
C9-026-C7-C30	23.8 (6)
O26-C7-C30-C8	-16.4 (7)
Ring D	
C8-- 9 - ${ }^{\text {Cl1-C12 }}$	62.5 (6)
C9-C11-C12-C13	-52.3 (7)
$\mathrm{C} 11-\mathrm{Cl2-C13-C14}$	24.0 (8)
$\mathrm{C} 12-\mathrm{Cl} 3-\mathrm{Cl} 4-\mathrm{C} 8$	-4.3 (8)
$\mathrm{C} 13-\mathrm{Cl} 4-\mathrm{C} 8-\mathrm{C} 9$	13.9 (8)
C14-C8-C9-C11	-44.1 (7)
Ring E	
C13-C14-C15-O16	6.4 (7)
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{O} 6-\mathrm{C} 17$	-9.7 (7)
$\mathrm{C} 15-\mathrm{O16-C17-C13}$	8.8 (7)
O16-C17-C13-C14	-4.3 (6)
$\mathrm{C} 17-\mathrm{Cl} 3-\mathrm{Cl} 4-\mathrm{Cl5}$	-0.9 (6)

Refinement was by the full-matrix least-squares method. H atoms were refined isotropically taking the starting values of the displacement parameters to be those of the heavy atoms to which they are covalently bonded.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Program used to determine the space group: STATCW (Sekar, 1991). Program used to solve structure: SHELXSS86 (Sheldrick, 1990). Program used to refine structure: SHELX76 (Sheldrick, 1976). Program used to calculate the molecuar parameters: PARST (Nardelli, 1983). Molecular graphics: ORTEPII (Johnson, 1976).

Our thanks are due to the Council of Scientific and Industrial Research, India, for the award of Senior Research Fellowship to KS.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: VJ1017). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Engh, R. A. \& Huber, R. (1991). Acta Cryst. A47, 392-400.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delf, The Netherlands.
Gzella, A., Zaprutko, L., Wrezciono, U. \& Jaskólski, M. (1987). Acıa Cryst. C43, 759-762.
Hall, S. R. \& Maslen, E. N. (1965). Acta Cryst. 18, 265-279.
Herz, W., Grisebach, H. \& Kirby, G. W. (1983). Progress in the Chemistry of Organic Natural Products, 44, pp. 101-187. Wien: Springer-Verlag.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sekar, K. (1991). Phd thesis, University of Madras, India.
Sekar, K., Parthasarathy, S., Kundu, A. B. \& Barik, B. R. (1992). Acta Cryst. C48, 2251-2253.
Sekar, K., Parthasarathy, S., Kundu, A. B. \& Barik, B. R. (1993). Acta Cryst. C49, 616-618.

Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure
Determination. University of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Acta Cryst. (1996). C52, 94-95

5-Methyl-3-(1-phenylethylidene)-2,3-di-hydrobenzo[b]furan-2-one

S. Selladurai, ${ }^{a}$ K. Subramanlan, ${ }^{b}$ S. Lakshmi, ${ }^{b}$ YuSheng Chen, ${ }^{c}$ Elizabeth J. Holt ${ }^{d}$ and S. Narasinga Rao ${ }^{c}$
${ }^{a}$ Division of Applied Sciences, MIT Campus, Anna University, Madras 25, India, ${ }^{b}$ Department of Physics, Anna University, Madras, India, ${ }^{\text {c }}$ Department of Physics, University of Central Oklahoma, Edmond, Oklahoma, USA, and ${ }^{d}$ Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA

(Received 12 December 1994; accepted 24 July 1995)

Abstract

The benzofuran ring in the title compound, $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}$, is planar with a methyl group substituted in the 5position. The 5 -methyl and 3 -ethylidene groups are in trans positions with respect to the benzofuran ring. The structure is stabilized by intermolecular van der Waals interactions.

Comment

The title compound, (I), was prepared as part of a study of diastereoselectivities of free-radical reactions. The crystal structure was determined in order to establish whether a phenylethylidene group would be formed trans or gauche to the benzofuran ring.

(I)

The benzofuran ring is planar (with a maximum deviation from the plane of $0.75 \AA$ for C 8) and shows typical aromaticity and delocalization of π electrons. The phenyl ring is twisted out of the plane of the benzofuran moiety by 130°. The 5 -methyl and ethylidene groups are in trans positions with respect to the benzofuran ring. Bond lengths and bond angles are as expected.

Fig. 1. View of the title molecule with displacement ellipsoids plotted at the 50% probability level.

Experimental

Crystal supplied by S . Selladurai.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}$
$M_{r}=250.3$
Triclinic
P^{-1}
$a=9.890(5) \AA$
$b=9.258(4) \AA$
$c=8.878(5) \AA$
$\alpha=108.26(4)^{\circ}$
$\beta=78.48$ (4) ${ }^{\circ}$
$\gamma=67.38(4)^{\circ}$
$V=663.3(6) \AA^{3}$
$Z=2$
$D_{x}=1.253 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.249 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation

Data collection

Syntex P3 diffractometer $\theta / 2 \theta$ scans
Absorption correction:
none
1901 measured reflections
1705 independent reflections
913 observed reflections $[I>3 \sigma(I)]$

Refinement

Refinement on F
$R=0.063$
$w R=0.083$
$S=1.271$
913 reflections
214 parameters
H -atom parameters not refined

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=11.5-15^{\circ}$
$\mu=0.0757 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block
$0.35 \times 0.29 \times 0.12 \mathrm{~mm}$
Red

[^0]: \dagger Present address: Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.
 \ddagger Contribution No. 851.

